E. Quinn 1/1/2022
This notebook analyzes data from the RI Division of Municipal Finance and Rhode Island Department of Education websites
import sys
import math
import re
import copy
import numpy as np
import scipy as sc
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import pickle
%matplotlib inline
from pathlib import Path
import os
from datetime import datetime, timedelta, date
from datascience import *
import uuid
import random
!pwd
/home/gquinn/EG/tax_rate_studies/notebooks
pd.set_option("display.max_rows",1000)
pd.set_option("display.max_columns",100)
pd.get_option("display.max_rows")
pd.get_option("display.max_columns")
100
p = Path('.')
txt_folder = p.rglob('../division_of_municipal_finance/assessed_value_by_town/Statewide-Net-Assessed-Value-FY*.csv')
files = [x for x in txt_folder]
assessed_value = None
for file in files:
fpath = file.as_posix()
df = pd.read_csv(fpath)
df['Municipality'] = df['Municipality'].str.upper().str.strip()
df.rename(columns = {'Total':'Total Assessed'}, inplace = True)
if assessed_value is None:
assessed_value = df
else:
frames = [assessed_value, df]
assessed_value = pd.concat(frames, sort=False)
print(assessed_value.shape)
assessed_value.head(39)
assessed_value.sort_values(['fyear','Municipality'],ascending=[False,True]).head(39)
(468, 7)
Municipality | Residential | Industrial | Tangible | Vehicle | Total Assessed | fyear | |
---|---|---|---|---|---|---|---|
0 | BARRINGTON | 3200189345 | 150387019 | 45980777 | 87258115 | 3483815256 | 2022 |
1 | BRISTOL | 2787240049 | 296033364 | 50048887 | 91665937 | 3224988237 | 2022 |
2 | BURRILLVILLE | 1379931278 | 282880476 | 180839889 | 72441728 | 1916093371 | 2022 |
3 | CENTRAL FALLS | 442255997 | 86157836 | 23887539 | 21953761 | 574255133 | 2022 |
4 | CHARLESTOWN | 2694376966 | 84851535 | 21811256 | 46754658 | 2847794415 | 2022 |
5 | COVENTRY | 3270176297 | 481136320 | 99449120 | 171001393 | 4021763130 | 2022 |
6 | CRANSTON | 6866409914 | 1649757156 | 367758127 | 293311890 | 9177237087 | 2022 |
7 | CUMBERLAND | 3518317657 | 634418199 | 203717338 | 181457461 | 4537910655 | 2022 |
8 | EAST GREENWICH | 2201170064 | 390591860 | 91916642 | 80564563 | 2764243129 | 2022 |
9 | EAST PROVIDENCE | 2792844817 | 1179499750 | 288728740 | 194804957 | 4455878264 | 2022 |
10 | EXETER | 870934255 | 81371150 | 25730960 | 40340211 | 1018376576 | 2022 |
11 | FOSTER | 578830988 | 44348300 | 10475354 | 24514943 | 658169585 | 2022 |
12 | GLOCESTER | 1035186494 | 64322906 | 21348829 | 54847060 | 1175705289 | 2022 |
13 | HOPKINTON | 883892640 | 100927741 | 48281770 | 40939086 | 1074041237 | 2022 |
14 | JAMESTOWN | 2547705324 | 79106146 | 14955997 | 34750812 | 2676518279 | 2022 |
15 | JOHNSTON | 1892160236 | 563727427 | 193512074 | 147376137 | 2796775874 | 2022 |
16 | LINCOLN | 1563030120 | 664419139 | 187194015 | 121641256 | 2536284530 | 2022 |
17 | LITTLE COMPTON | 2161884261 | 42555500 | 11244248 | 20187370 | 2235871379 | 2022 |
18 | MIDDLETOWN | 2757975650 | 719597500 | 100218397 | 79640236 | 3657431783 | 2022 |
19 | NARRAGANSETT | 5536820247 | 367807312 | 109982141 | 76850067 | 6091459767 | 2022 |
20 | NEW SHOREHAM | 1512219063 | 161964692 | 15288959 | 8271583 | 1697744297 | 2022 |
21 | NEWPORT | 6253671908 | 1409477896 | 152220873 | 74501090 | 7889871767 | 2022 |
22 | NORTH KINGSTOWN | 3660590770 | 805344286 | 183538760 | 180559202 | 4830033018 | 2022 |
23 | NORTH PROVIDENCE | 1996593720 | 506759429 | 91286433 | 109182239 | 2703821821 | 2022 |
24 | NORTH SMITHFIELD | 1284610669 | 335214762 | 147397137 | 67072254 | 1834294822 | 2022 |
25 | PAWTUCKET | 4013154906 | 949048713 | 153718310 | 164737056 | 5280658985 | 2022 |
26 | PORTSMOUTH | 3341309327 | 303880755 | 127859056 | 67166377 | 3840215515 | 2022 |
27 | PROVIDENCE | 6695723334 | 3469276368 | 1117783000 | 307901312 | 11590684014 | 2022 |
28 | RICHMOND | 850001231 | 96033340 | 26235273 | 35957056 | 1008226900 | 2022 |
29 | SCITUATE | 1251853517 | 353921441 | 26970497 | 54799296 | 1687544751 | 2022 |
30 | SMITHFIELD | 2076774871 | 719365166 | 148073299 | 117981343 | 3062194679 | 2022 |
31 | SOUTH KINGSTOWN | 4464036880 | 554765455 | 107007815 | 136900889 | 5262711039 | 2022 |
32 | TIVERTON | 2382716127 | 295266002 | 70126333 | 70281877 | 2818390339 | 2022 |
33 | WARREN | 1136266337 | 200000982 | 37340751 | 43706299 | 1417314369 | 2022 |
34 | WARWICK | 7247275009 | 2391529993 | 572025589 | 445330825 | 10656161416 | 2022 |
35 | WEST GREENWICH | 596066133 | 222585643 | 51343215 | 42003177 | 911998168 | 2022 |
36 | WEST WARWICK | 1759612795 | 505959933 | 159047620 | 107997356 | 2532617704 | 2022 |
37 | WESTERLY | 5643209917 | 677003900 | 133872207 | 114923126 | 6569009150 | 2022 |
38 | WOONSOCKET | 1130855404 | 547028703 | 123239200 | 89200938 | 1890324245 | 2022 |
p = Path('.')
txt_folder = p.rglob('../division_of_municipal_finance/levy_by_town/Municipal_Finance_Levy_20*.csv')
files = [x for x in txt_folder]
levy = None
for file in files:
fpath = file.as_posix()
fyear = int(fpath[69:73])
df = pd.read_csv(fpath)
df['fyear'] = fyear
df['population'] = round(df['Municipal Total']/df['Levy Per Capita'])
df.rename(columns = {'Town':'Municipality','Commercial/Industrial':'Industrial',
'Motor Vehicles':'Vehicle','Municipal Total':'Total Levy'}, inplace = True)
df['Municipality'] = df['Municipality'].str.upper().str.strip()
if levy is None:
levy = df
else:
frames = [levy, df]
levy = pd.concat(frames, sort=False)
print(levy.shape)
levy.sort_values(['fyear','Municipality'],ascending=[False,True]).head(39)
(468, 9)
Municipality | Residential | Industrial | Tangible | Vehicle | Total Levy | Levy Per Capita | fyear | population | |
---|---|---|---|---|---|---|---|---|---|
0 | BARRINGTON | 61283626 | 2879911 | 880485 | 2617376 | 67661399 | 4194 | 2022 | 16133.0 |
1 | BRISTOL | 40080512 | 4256960 | 719703 | 1590404 | 46647579 | 2106 | 2022 | 22150.0 |
2 | BURRILLVILLE | 22658732 | 4644916 | 2969593 | 2172854 | 32446095 | 1956 | 2022 | 16588.0 |
3 | CENTRAL FALLS | 9607275 | 3647064 | 1349032 | 658127 | 15261498 | 786 | 2022 | 19417.0 |
4 | CHARLESTOWN | 22040073 | 694086 | 178465 | 611166 | 23523789 | 3016 | 2022 | 7800.0 |
5 | COVENTRY | 61080079 | 11254260 | 1929644 | 3204895 | 77468878 | 2237 | 2022 | 34631.0 |
6 | CRANSTON | 123594743 | 44543443 | 9929469 | 8799357 | 186867012 | 2300 | 2022 | 81247.0 |
7 | CUMBERLAND | 51860429 | 9351324 | 5775169 | 3432140 | 70419063 | 2021 | 2022 | 34844.0 |
8 | EAST GREENWICH | 46246583 | 9081261 | 2778640 | 1843317 | 59949801 | 4583 | 2022 | 13081.0 |
9 | EAST PROVIDENCE | 60046147 | 31197772 | 15998448 | 6816698 | 114059066 | 2402 | 2022 | 47485.0 |
10 | EXETER | 11949348 | 1116286 | 353056 | 1210210 | 14628901 | 2195 | 2022 | 6665.0 |
11 | FOSTER | 11658088 | 940878 | 307556 | 735331 | 13641853 | 2895 | 2022 | 4712.0 |
12 | GLOCESTER | 19102206 | 1423466 | 787420 | 1336378 | 22649470 | 2233 | 2022 | 10143.0 |
13 | HOPKINTON | 16378516 | 1870191 | 894600 | 866813 | 20010120 | 2471 | 2022 | 8098.0 |
14 | JAMESTOWN | 21095000 | 654999 | 123945 | 500714 | 22374657 | 4073 | 2022 | 5493.0 |
15 | JOHNSTON | 43973823 | 15976035 | 12450579 | 4420417 | 76820854 | 2621 | 2022 | 29310.0 |
16 | LINCOLN | 31736099 | 16750031 | 5992081 | 3648669 | 58126879 | 2675 | 2022 | 21730.0 |
17 | LITTLE COMPTON | 12800734 | 257035 | 141651 | 284780 | 13484200 | 3865 | 2022 | 3489.0 |
18 | MIDDLETOWN | 33150865 | 12398665 | 1726760 | 1277791 | 48554082 | 3031 | 2022 | 16019.0 |
19 | NARRAGANSETT | 49056227 | 4398974 | 1315386 | 1264928 | 56035516 | 3615 | 2022 | 15501.0 |
20 | NEW SHOREHAM | 10131869 | 1085163 | 102520 | 80599 | 11400152 | 12446 | 2022 | 916.0 |
21 | NEWPORT | 58346765 | 19718596 | 2129751 | 1746476 | 81941588 | 3322 | 2022 | 24666.0 |
22 | NORTH KINGSTOWN | 64060339 | 14093525 | 3419262 | 3470760 | 85043886 | 3242 | 2022 | 26232.0 |
23 | NORTH PROVIDENCE | 45542307 | 14974743 | 5913535 | 3274461 | 69705046 | 2141 | 2022 | 32557.0 |
24 | NORTH SMITHFIELD | 20981050 | 6516910 | 6439852 | 2011093 | 35948906 | 2896 | 2022 | 12413.0 |
25 | PAWTUCKET | 66538110 | 27541394 | 8007187 | 4933972 | 107020663 | 1490 | 2022 | 71826.0 |
26 | PORTSMOUTH | 51138749 | 4650895 | 1957129 | 1511133 | 59257906 | 3413 | 2022 | 17362.0 |
27 | PROVIDENCE | 167013329 | 127322520 | 62372321 | 9258888 | 365967057 | 2039 | 2022 | 179484.0 |
28 | RICHMOND | 17527028 | 1980207 | 540986 | 813781 | 20862003 | 2726 | 2022 | 7653.0 |
29 | SCITUATE | 21843937 | 8207438 | 1073700 | 1643803 | 32768878 | 3082 | 2022 | 10632.0 |
30 | SMITHFIELD | 34208110 | 13452127 | 8845889 | 3538967 | 60045093 | 2768 | 2022 | 21693.0 |
31 | SOUTH KINGSTOWN | 64505314 | 8016362 | 1546259 | 2560570 | 76628505 | 2500 | 2022 | 30651.0 |
32 | TIVERTON | 34001362 | 4213446 | 1000703 | 1345168 | 40560680 | 2571 | 2022 | 15776.0 |
33 | WARREN | 20134631 | 3544017 | 661634 | 1136094 | 25476376 | 2429 | 2022 | 10488.0 |
34 | WARWICK | 135741461 | 67201993 | 21428079 | 13359925 | 237731457 | 2935 | 2022 | 80999.0 |
35 | WEST GREENWICH | 12961156 | 5426647 | 1751849 | 798853 | 20938506 | 3364 | 2022 | 6224.0 |
36 | WEST WARWICK | 41815001 | 16775720 | 7271969 | 3074686 | 68937375 | 2382 | 2022 | 28941.0 |
37 | WESTERLY | 65009851 | 7799085 | 1574260 | 3210367 | 77593563 | 3442 | 2022 | 22543.0 |
38 | WOONSOCKET | 26857836 | 19009252 | 5740485 | 2674739 | 54282311 | 1305 | 2022 | 41596.0 |
rimf1 = pd.merge(assessed_value,levy, on=['Municipality','fyear'], how='inner',suffixes=('_av','_lv'))
print(rimf1.columns.to_numpy())
rimf1.sort_values(['fyear','Municipality'],ascending=[False,True]).head(39)
['Municipality' 'Residential_av' 'Industrial_av' 'Tangible_av' 'Vehicle_av' 'Total Assessed' 'fyear' 'Residential_lv' 'Industrial_lv' 'Tangible_lv' 'Vehicle_lv' 'Total Levy' 'Levy Per Capita' 'population']
Municipality | Residential_av | Industrial_av | Tangible_av | Vehicle_av | Total Assessed | fyear | Residential_lv | Industrial_lv | Tangible_lv | Vehicle_lv | Total Levy | Levy Per Capita | population | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
429 | BARRINGTON | 3200189345 | 150387019 | 45980777 | 87258115 | 3483815256 | 2022 | 61283626 | 2879911 | 880485 | 2617376 | 67661399 | 4194 | 16133.0 |
430 | BRISTOL | 2787240049 | 296033364 | 50048887 | 91665937 | 3224988237 | 2022 | 40080512 | 4256960 | 719703 | 1590404 | 46647579 | 2106 | 22150.0 |
431 | BURRILLVILLE | 1379931278 | 282880476 | 180839889 | 72441728 | 1916093371 | 2022 | 22658732 | 4644916 | 2969593 | 2172854 | 32446095 | 1956 | 16588.0 |
432 | CENTRAL FALLS | 442255997 | 86157836 | 23887539 | 21953761 | 574255133 | 2022 | 9607275 | 3647064 | 1349032 | 658127 | 15261498 | 786 | 19417.0 |
433 | CHARLESTOWN | 2694376966 | 84851535 | 21811256 | 46754658 | 2847794415 | 2022 | 22040073 | 694086 | 178465 | 611166 | 23523789 | 3016 | 7800.0 |
434 | COVENTRY | 3270176297 | 481136320 | 99449120 | 171001393 | 4021763130 | 2022 | 61080079 | 11254260 | 1929644 | 3204895 | 77468878 | 2237 | 34631.0 |
435 | CRANSTON | 6866409914 | 1649757156 | 367758127 | 293311890 | 9177237087 | 2022 | 123594743 | 44543443 | 9929469 | 8799357 | 186867012 | 2300 | 81247.0 |
436 | CUMBERLAND | 3518317657 | 634418199 | 203717338 | 181457461 | 4537910655 | 2022 | 51860429 | 9351324 | 5775169 | 3432140 | 70419063 | 2021 | 34844.0 |
437 | EAST GREENWICH | 2201170064 | 390591860 | 91916642 | 80564563 | 2764243129 | 2022 | 46246583 | 9081261 | 2778640 | 1843317 | 59949801 | 4583 | 13081.0 |
438 | EAST PROVIDENCE | 2792844817 | 1179499750 | 288728740 | 194804957 | 4455878264 | 2022 | 60046147 | 31197772 | 15998448 | 6816698 | 114059066 | 2402 | 47485.0 |
439 | EXETER | 870934255 | 81371150 | 25730960 | 40340211 | 1018376576 | 2022 | 11949348 | 1116286 | 353056 | 1210210 | 14628901 | 2195 | 6665.0 |
440 | FOSTER | 578830988 | 44348300 | 10475354 | 24514943 | 658169585 | 2022 | 11658088 | 940878 | 307556 | 735331 | 13641853 | 2895 | 4712.0 |
441 | GLOCESTER | 1035186494 | 64322906 | 21348829 | 54847060 | 1175705289 | 2022 | 19102206 | 1423466 | 787420 | 1336378 | 22649470 | 2233 | 10143.0 |
442 | HOPKINTON | 883892640 | 100927741 | 48281770 | 40939086 | 1074041237 | 2022 | 16378516 | 1870191 | 894600 | 866813 | 20010120 | 2471 | 8098.0 |
443 | JAMESTOWN | 2547705324 | 79106146 | 14955997 | 34750812 | 2676518279 | 2022 | 21095000 | 654999 | 123945 | 500714 | 22374657 | 4073 | 5493.0 |
444 | JOHNSTON | 1892160236 | 563727427 | 193512074 | 147376137 | 2796775874 | 2022 | 43973823 | 15976035 | 12450579 | 4420417 | 76820854 | 2621 | 29310.0 |
445 | LINCOLN | 1563030120 | 664419139 | 187194015 | 121641256 | 2536284530 | 2022 | 31736099 | 16750031 | 5992081 | 3648669 | 58126879 | 2675 | 21730.0 |
446 | LITTLE COMPTON | 2161884261 | 42555500 | 11244248 | 20187370 | 2235871379 | 2022 | 12800734 | 257035 | 141651 | 284780 | 13484200 | 3865 | 3489.0 |
447 | MIDDLETOWN | 2757975650 | 719597500 | 100218397 | 79640236 | 3657431783 | 2022 | 33150865 | 12398665 | 1726760 | 1277791 | 48554082 | 3031 | 16019.0 |
448 | NARRAGANSETT | 5536820247 | 367807312 | 109982141 | 76850067 | 6091459767 | 2022 | 49056227 | 4398974 | 1315386 | 1264928 | 56035516 | 3615 | 15501.0 |
449 | NEW SHOREHAM | 1512219063 | 161964692 | 15288959 | 8271583 | 1697744297 | 2022 | 10131869 | 1085163 | 102520 | 80599 | 11400152 | 12446 | 916.0 |
450 | NEWPORT | 6253671908 | 1409477896 | 152220873 | 74501090 | 7889871767 | 2022 | 58346765 | 19718596 | 2129751 | 1746476 | 81941588 | 3322 | 24666.0 |
451 | NORTH KINGSTOWN | 3660590770 | 805344286 | 183538760 | 180559202 | 4830033018 | 2022 | 64060339 | 14093525 | 3419262 | 3470760 | 85043886 | 3242 | 26232.0 |
452 | NORTH PROVIDENCE | 1996593720 | 506759429 | 91286433 | 109182239 | 2703821821 | 2022 | 45542307 | 14974743 | 5913535 | 3274461 | 69705046 | 2141 | 32557.0 |
453 | NORTH SMITHFIELD | 1284610669 | 335214762 | 147397137 | 67072254 | 1834294822 | 2022 | 20981050 | 6516910 | 6439852 | 2011093 | 35948906 | 2896 | 12413.0 |
454 | PAWTUCKET | 4013154906 | 949048713 | 153718310 | 164737056 | 5280658985 | 2022 | 66538110 | 27541394 | 8007187 | 4933972 | 107020663 | 1490 | 71826.0 |
455 | PORTSMOUTH | 3341309327 | 303880755 | 127859056 | 67166377 | 3840215515 | 2022 | 51138749 | 4650895 | 1957129 | 1511133 | 59257906 | 3413 | 17362.0 |
456 | PROVIDENCE | 6695723334 | 3469276368 | 1117783000 | 307901312 | 11590684014 | 2022 | 167013329 | 127322520 | 62372321 | 9258888 | 365967057 | 2039 | 179484.0 |
457 | RICHMOND | 850001231 | 96033340 | 26235273 | 35957056 | 1008226900 | 2022 | 17527028 | 1980207 | 540986 | 813781 | 20862003 | 2726 | 7653.0 |
458 | SCITUATE | 1251853517 | 353921441 | 26970497 | 54799296 | 1687544751 | 2022 | 21843937 | 8207438 | 1073700 | 1643803 | 32768878 | 3082 | 10632.0 |
459 | SMITHFIELD | 2076774871 | 719365166 | 148073299 | 117981343 | 3062194679 | 2022 | 34208110 | 13452127 | 8845889 | 3538967 | 60045093 | 2768 | 21693.0 |
460 | SOUTH KINGSTOWN | 4464036880 | 554765455 | 107007815 | 136900889 | 5262711039 | 2022 | 64505314 | 8016362 | 1546259 | 2560570 | 76628505 | 2500 | 30651.0 |
461 | TIVERTON | 2382716127 | 295266002 | 70126333 | 70281877 | 2818390339 | 2022 | 34001362 | 4213446 | 1000703 | 1345168 | 40560680 | 2571 | 15776.0 |
462 | WARREN | 1136266337 | 200000982 | 37340751 | 43706299 | 1417314369 | 2022 | 20134631 | 3544017 | 661634 | 1136094 | 25476376 | 2429 | 10488.0 |
463 | WARWICK | 7247275009 | 2391529993 | 572025589 | 445330825 | 10656161416 | 2022 | 135741461 | 67201993 | 21428079 | 13359925 | 237731457 | 2935 | 80999.0 |
464 | WEST GREENWICH | 596066133 | 222585643 | 51343215 | 42003177 | 911998168 | 2022 | 12961156 | 5426647 | 1751849 | 798853 | 20938506 | 3364 | 6224.0 |
465 | WEST WARWICK | 1759612795 | 505959933 | 159047620 | 107997356 | 2532617704 | 2022 | 41815001 | 16775720 | 7271969 | 3074686 | 68937375 | 2382 | 28941.0 |
466 | WESTERLY | 5643209917 | 677003900 | 133872207 | 114923126 | 6569009150 | 2022 | 65009851 | 7799085 | 1574260 | 3210367 | 77593563 | 3442 | 22543.0 |
467 | WOONSOCKET | 1130855404 | 547028703 | 123239200 | 89200938 | 1890324245 | 2022 | 26857836 | 19009252 | 5740485 | 2674739 | 54282311 | 1305 | 41596.0 |
p = Path('.')
txt_folder = p.rglob('../division_of_municipal_finance/tax_rates_by_town/property_tax_by_town_20*.csv')
files = [x for x in txt_folder]
tax_rates = None
for file in files:
fpath = file.as_posix()
fyear = int(file.name[21:25])
df = pd.read_csv(fpath)
df['fyear'] = fyear
df.rename(columns = {'Town':'Municipality'}, inplace = True)
df['Municipality'] = df['Municipality'].str.upper().str.strip()
if tax_rates is None:
tax_rates = df
else:
frames = [tax_rates, df]
tax_rates = pd.concat(frames, sort=False)
print(tax_rates.shape)
print(tax_rates.columns.to_numpy())
tax_rates.sort_values(['fyear','Municipality'],ascending=[False,True]).head(39)
(892, 7) ['Municipality' 'RRE' 'COMM' 'PP' 'MV' 'INVTY' 'fyear']
Municipality | RRE | COMM | PP | MV | INVTY | fyear | |
---|---|---|---|---|---|---|---|
0 | BARRINGTON | 19.15 | 19.15 | 19.15 | 30.00 | NaN | 2022 |
1 | BRISTOL | 14.38 | 14.38 | 14.38 | 17.35 | NaN | 2022 |
2 | BURRILLVILLE | 16.42 | 16.42 | 16.42 | 30.00 | NaN | 2022 |
3 | CENTRAL FALLS | 23.76 | 42.33 | 56.47 | 30.00 | NaN | 2022 |
4 | CHARLESTOWN | 8.18 | 8.18 | 8.18 | 13.08 | NaN | 2022 |
5 | COVENTRY | 19.40 | 23.39 | 19.4 | 18.75 | NaN | 2022 |
6 | CRANSTON | 18.00 | 27.00 | 27.0 | 30.00 | NaN | 2022 |
7 | CUMBERLAND | 14.74 | 14.74 | 29.45 | 19.87 | NaN | 2022 |
8 | EAST GREENWICH | 21.01 | 23.25 | 30.23 | 22.88 | NaN | 2022 |
9 | EAST PROVIDENCE | 21.50 | 26.45 | 55.41 | 35.00 | NaN | 2022 |
10 | EXETER | 13.72 | 13.72 | 13.72 | 30.00 | NaN | 2022 |
11 | FOSTER | 21.34 | 21.34 | 29.36 | 30.00 | NaN | 2022 |
12 | GLOCESTER | 18.44 | 22.13 | 36.88 | 24.37 | NaN | 2022 |
13 | HOPKINTON | 18.53 | 18.53 | 18.53 | 21.18 | NaN | 2022 |
14 | JAMESTOWN | 8.28 | 8.28 | 8.28 | 14.42 | NaN | 2022 |
15 | JOHNSTON | 23.24 | 28.34 | 64.34 | 30.00 | NaN | 2022 |
16 | LINCOLN | 20.29 | 25.21 | 32.01 | 30.00 | NaN | 2022 |
17 | LITTLE COMPTON | 6.04 | 6.04 | 12.08 | 13.90 | NaN | 2022 |
18 | MIDDLETOWN | 12.02 | 17.23 | 17.23 | 16.05 | NaN | 2022 |
19 | NARRAGANSETT | 8.86 | 11.96 | 11.96 | 16.46 | NaN | 2022 |
20 | NEW SHOREHAM | 6.70 | 6.70 | 6.7 | 9.75 | NaN | 2022 |
21 | NEWPORT | 9.33 | 13.99 | 13.99 | 23.45 | NaN | 2022 |
22 | NORTH KINGSTOWN | 17.50 | 17.50 | 17.5 | 22.04 | NaN | 2022 |
23 | NORTH PROVIDENCE | 22.81 | 29.55 | 64.78 | 30.00 | NaN | 2022 |
24 | NORTH SMITHFIELD | 16.35 | 19.44 | 43.69 | 30.00 | NaN | 2022 |
25 | PAWTUCKET | 16.58 | 29.02 | 52.09 | 30.00 | NaN | 2022 |
26 | PORTSMOUTH | 15.31 | 15.31 | 15.31 | 22.50 | NaN | 2022 |
27 | PROVIDENCE | 24.56 | 36.70 | 55.8 | 30.00 | NaN | 2022 |
28 | RICHMOND | 20.62 | 20.62 | 20.62 | 22.64 | NaN | 2022 |
29 | SCITUATE | 18.69 | 23.19 | 39.81 | 30.00 | NaN | 2022 |
30 | SMITHFIELD | 17.13 | 18.70 | 59.74 | 30.00 | NaN | 2022 |
31 | SOUTH KINGSTOWN | 14.45 | 14.45 | 14.45 | 18.71 | NaN | 2022 |
32 | TIVERTON | 14.27 | 14.27 | 14.27 | 19.14 | NaN | 2022 |
33 | WARREN | 17.72 | 17.72 | 17.72 | 26.00 | NaN | 2022 |
34 | WARWICK | 18.73 | 28.10 | 37.46 | 30.00 | NaN | 2022 |
35 | WEST GREENWICH | 24.03 | 24.03 | 34.12 | 19.02 | NaN | 2022 |
36 | WEST WARWICK | 23.00 | 32.43 | 45.72 | 28.47 | NaN | 2022 |
37 | WESTERLY | 11.52 | 11.52 | 11.52 | 29.67 | NaN | 2022 |
38 | WOONSOCKET | 23.75 | 34.75 | 46.58 | 30.00 | NaN | 2022 |
rimf2 = pd.merge(rimf1,tax_rates, on=['Municipality','fyear'], how='inner',suffixes=('_mf1','_tr'))
print(rimf2.columns.to_numpy())
rimf2.sort_values(['fyear','Municipality'],ascending=[False,True]).head(39)
['Municipality' 'Residential_av' 'Industrial_av' 'Tangible_av' 'Vehicle_av' 'Total Assessed' 'fyear' 'Residential_lv' 'Industrial_lv' 'Tangible_lv' 'Vehicle_lv' 'Total Levy' 'Levy Per Capita' 'population' 'RRE' 'COMM' 'PP' 'MV' 'INVTY']
Municipality | Residential_av | Industrial_av | Tangible_av | Vehicle_av | Total Assessed | fyear | Residential_lv | Industrial_lv | Tangible_lv | Vehicle_lv | Total Levy | Levy Per Capita | population | RRE | COMM | PP | MV | INVTY | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
428 | BARRINGTON | 3200189345 | 150387019 | 45980777 | 87258115 | 3483815256 | 2022 | 61283626 | 2879911 | 880485 | 2617376 | 67661399 | 4194 | 16133.0 | 19.15 | 19.15 | 19.15 | 30.00 | NaN |
429 | BRISTOL | 2787240049 | 296033364 | 50048887 | 91665937 | 3224988237 | 2022 | 40080512 | 4256960 | 719703 | 1590404 | 46647579 | 2106 | 22150.0 | 14.38 | 14.38 | 14.38 | 17.35 | NaN |
430 | BURRILLVILLE | 1379931278 | 282880476 | 180839889 | 72441728 | 1916093371 | 2022 | 22658732 | 4644916 | 2969593 | 2172854 | 32446095 | 1956 | 16588.0 | 16.42 | 16.42 | 16.42 | 30.00 | NaN |
431 | CENTRAL FALLS | 442255997 | 86157836 | 23887539 | 21953761 | 574255133 | 2022 | 9607275 | 3647064 | 1349032 | 658127 | 15261498 | 786 | 19417.0 | 23.76 | 42.33 | 56.47 | 30.00 | NaN |
432 | CHARLESTOWN | 2694376966 | 84851535 | 21811256 | 46754658 | 2847794415 | 2022 | 22040073 | 694086 | 178465 | 611166 | 23523789 | 3016 | 7800.0 | 8.18 | 8.18 | 8.18 | 13.08 | NaN |
433 | COVENTRY | 3270176297 | 481136320 | 99449120 | 171001393 | 4021763130 | 2022 | 61080079 | 11254260 | 1929644 | 3204895 | 77468878 | 2237 | 34631.0 | 19.40 | 23.39 | 19.4 | 18.75 | NaN |
434 | CRANSTON | 6866409914 | 1649757156 | 367758127 | 293311890 | 9177237087 | 2022 | 123594743 | 44543443 | 9929469 | 8799357 | 186867012 | 2300 | 81247.0 | 18.00 | 27.00 | 27.0 | 30.00 | NaN |
435 | CUMBERLAND | 3518317657 | 634418199 | 203717338 | 181457461 | 4537910655 | 2022 | 51860429 | 9351324 | 5775169 | 3432140 | 70419063 | 2021 | 34844.0 | 14.74 | 14.74 | 29.45 | 19.87 | NaN |
436 | EAST GREENWICH | 2201170064 | 390591860 | 91916642 | 80564563 | 2764243129 | 2022 | 46246583 | 9081261 | 2778640 | 1843317 | 59949801 | 4583 | 13081.0 | 21.01 | 23.25 | 30.23 | 22.88 | NaN |
437 | EAST PROVIDENCE | 2792844817 | 1179499750 | 288728740 | 194804957 | 4455878264 | 2022 | 60046147 | 31197772 | 15998448 | 6816698 | 114059066 | 2402 | 47485.0 | 21.50 | 26.45 | 55.41 | 35.00 | NaN |
438 | EXETER | 870934255 | 81371150 | 25730960 | 40340211 | 1018376576 | 2022 | 11949348 | 1116286 | 353056 | 1210210 | 14628901 | 2195 | 6665.0 | 13.72 | 13.72 | 13.72 | 30.00 | NaN |
439 | FOSTER | 578830988 | 44348300 | 10475354 | 24514943 | 658169585 | 2022 | 11658088 | 940878 | 307556 | 735331 | 13641853 | 2895 | 4712.0 | 21.34 | 21.34 | 29.36 | 30.00 | NaN |
440 | GLOCESTER | 1035186494 | 64322906 | 21348829 | 54847060 | 1175705289 | 2022 | 19102206 | 1423466 | 787420 | 1336378 | 22649470 | 2233 | 10143.0 | 18.44 | 22.13 | 36.88 | 24.37 | NaN |
441 | HOPKINTON | 883892640 | 100927741 | 48281770 | 40939086 | 1074041237 | 2022 | 16378516 | 1870191 | 894600 | 866813 | 20010120 | 2471 | 8098.0 | 18.53 | 18.53 | 18.53 | 21.18 | NaN |
442 | JAMESTOWN | 2547705324 | 79106146 | 14955997 | 34750812 | 2676518279 | 2022 | 21095000 | 654999 | 123945 | 500714 | 22374657 | 4073 | 5493.0 | 8.28 | 8.28 | 8.28 | 14.42 | NaN |
443 | JOHNSTON | 1892160236 | 563727427 | 193512074 | 147376137 | 2796775874 | 2022 | 43973823 | 15976035 | 12450579 | 4420417 | 76820854 | 2621 | 29310.0 | 23.24 | 28.34 | 64.34 | 30.00 | NaN |
444 | LINCOLN | 1563030120 | 664419139 | 187194015 | 121641256 | 2536284530 | 2022 | 31736099 | 16750031 | 5992081 | 3648669 | 58126879 | 2675 | 21730.0 | 20.29 | 25.21 | 32.01 | 30.00 | NaN |
445 | LITTLE COMPTON | 2161884261 | 42555500 | 11244248 | 20187370 | 2235871379 | 2022 | 12800734 | 257035 | 141651 | 284780 | 13484200 | 3865 | 3489.0 | 6.04 | 6.04 | 12.08 | 13.90 | NaN |
446 | MIDDLETOWN | 2757975650 | 719597500 | 100218397 | 79640236 | 3657431783 | 2022 | 33150865 | 12398665 | 1726760 | 1277791 | 48554082 | 3031 | 16019.0 | 12.02 | 17.23 | 17.23 | 16.05 | NaN |
447 | NARRAGANSETT | 5536820247 | 367807312 | 109982141 | 76850067 | 6091459767 | 2022 | 49056227 | 4398974 | 1315386 | 1264928 | 56035516 | 3615 | 15501.0 | 8.86 | 11.96 | 11.96 | 16.46 | NaN |
448 | NEW SHOREHAM | 1512219063 | 161964692 | 15288959 | 8271583 | 1697744297 | 2022 | 10131869 | 1085163 | 102520 | 80599 | 11400152 | 12446 | 916.0 | 6.70 | 6.70 | 6.7 | 9.75 | NaN |
449 | NEWPORT | 6253671908 | 1409477896 | 152220873 | 74501090 | 7889871767 | 2022 | 58346765 | 19718596 | 2129751 | 1746476 | 81941588 | 3322 | 24666.0 | 9.33 | 13.99 | 13.99 | 23.45 | NaN |
450 | NORTH KINGSTOWN | 3660590770 | 805344286 | 183538760 | 180559202 | 4830033018 | 2022 | 64060339 | 14093525 | 3419262 | 3470760 | 85043886 | 3242 | 26232.0 | 17.50 | 17.50 | 17.5 | 22.04 | NaN |
451 | NORTH PROVIDENCE | 1996593720 | 506759429 | 91286433 | 109182239 | 2703821821 | 2022 | 45542307 | 14974743 | 5913535 | 3274461 | 69705046 | 2141 | 32557.0 | 22.81 | 29.55 | 64.78 | 30.00 | NaN |
452 | NORTH SMITHFIELD | 1284610669 | 335214762 | 147397137 | 67072254 | 1834294822 | 2022 | 20981050 | 6516910 | 6439852 | 2011093 | 35948906 | 2896 | 12413.0 | 16.35 | 19.44 | 43.69 | 30.00 | NaN |
453 | PAWTUCKET | 4013154906 | 949048713 | 153718310 | 164737056 | 5280658985 | 2022 | 66538110 | 27541394 | 8007187 | 4933972 | 107020663 | 1490 | 71826.0 | 16.58 | 29.02 | 52.09 | 30.00 | NaN |
454 | PORTSMOUTH | 3341309327 | 303880755 | 127859056 | 67166377 | 3840215515 | 2022 | 51138749 | 4650895 | 1957129 | 1511133 | 59257906 | 3413 | 17362.0 | 15.31 | 15.31 | 15.31 | 22.50 | NaN |
455 | PROVIDENCE | 6695723334 | 3469276368 | 1117783000 | 307901312 | 11590684014 | 2022 | 167013329 | 127322520 | 62372321 | 9258888 | 365967057 | 2039 | 179484.0 | 24.56 | 36.70 | 55.8 | 30.00 | NaN |
456 | RICHMOND | 850001231 | 96033340 | 26235273 | 35957056 | 1008226900 | 2022 | 17527028 | 1980207 | 540986 | 813781 | 20862003 | 2726 | 7653.0 | 20.62 | 20.62 | 20.62 | 22.64 | NaN |
457 | SCITUATE | 1251853517 | 353921441 | 26970497 | 54799296 | 1687544751 | 2022 | 21843937 | 8207438 | 1073700 | 1643803 | 32768878 | 3082 | 10632.0 | 18.69 | 23.19 | 39.81 | 30.00 | NaN |
458 | SMITHFIELD | 2076774871 | 719365166 | 148073299 | 117981343 | 3062194679 | 2022 | 34208110 | 13452127 | 8845889 | 3538967 | 60045093 | 2768 | 21693.0 | 17.13 | 18.70 | 59.74 | 30.00 | NaN |
459 | SOUTH KINGSTOWN | 4464036880 | 554765455 | 107007815 | 136900889 | 5262711039 | 2022 | 64505314 | 8016362 | 1546259 | 2560570 | 76628505 | 2500 | 30651.0 | 14.45 | 14.45 | 14.45 | 18.71 | NaN |
460 | TIVERTON | 2382716127 | 295266002 | 70126333 | 70281877 | 2818390339 | 2022 | 34001362 | 4213446 | 1000703 | 1345168 | 40560680 | 2571 | 15776.0 | 14.27 | 14.27 | 14.27 | 19.14 | NaN |
461 | WARREN | 1136266337 | 200000982 | 37340751 | 43706299 | 1417314369 | 2022 | 20134631 | 3544017 | 661634 | 1136094 | 25476376 | 2429 | 10488.0 | 17.72 | 17.72 | 17.72 | 26.00 | NaN |
462 | WARWICK | 7247275009 | 2391529993 | 572025589 | 445330825 | 10656161416 | 2022 | 135741461 | 67201993 | 21428079 | 13359925 | 237731457 | 2935 | 80999.0 | 18.73 | 28.10 | 37.46 | 30.00 | NaN |
463 | WEST GREENWICH | 596066133 | 222585643 | 51343215 | 42003177 | 911998168 | 2022 | 12961156 | 5426647 | 1751849 | 798853 | 20938506 | 3364 | 6224.0 | 24.03 | 24.03 | 34.12 | 19.02 | NaN |
464 | WEST WARWICK | 1759612795 | 505959933 | 159047620 | 107997356 | 2532617704 | 2022 | 41815001 | 16775720 | 7271969 | 3074686 | 68937375 | 2382 | 28941.0 | 23.00 | 32.43 | 45.72 | 28.47 | NaN |
465 | WESTERLY | 5643209917 | 677003900 | 133872207 | 114923126 | 6569009150 | 2022 | 65009851 | 7799085 | 1574260 | 3210367 | 77593563 | 3442 | 22543.0 | 11.52 | 11.52 | 11.52 | 29.67 | NaN |
466 | WOONSOCKET | 1130855404 | 547028703 | 123239200 | 89200938 | 1890324245 | 2022 | 26857836 | 19009252 | 5740485 | 2674739 | 54282311 | 1305 | 41596.0 | 23.75 | 34.75 | 46.58 | 30.00 | NaN |
education_aid = pd.read_csv("../division_of_municipal_finance/State_Education_Aid_FY2022.csv")
education_aid['Municipality'] = education_aid['Municipality'].str.upper().str.strip()
print(education_aid.shape)
education_aid
(39, 8)
Municipality | fyear | Education Aid | RADM | FRL | SSRC | FRPL | QM | |
---|---|---|---|---|---|---|---|---|
0 | BARRINGTON | 2022 | 7924118 | 3416 | 145 | 0.051 | 0.298 | 0.214 |
1 | BRISTOL | 2022 | 4852340 | 1923 | 485 | 0.230 | 0.199 | 0.215 |
2 | BURRILLVILLE | 2022 | 13780456 | 2226 | 782 | 0.389 | 0.607 | 0.510 |
3 | CENTRAL FALLS | 2022 | 38557253 | 2733 | 2666 | 0.933 | 0.975 | 0.954 |
4 | CHARLESTOWN | 2022 | 1291300 | 740 | 156 | 0.214 | 0.000 | 0.151 |
5 | COVENTRY | 2022 | 24066104 | 4502 | 1207 | 0.303 | 0.565 | 0.453 |
6 | CRANSTON | 2022 | 68482484 | 10166 | 4098 | 0.438 | 0.635 | 0.545 |
7 | CUMBERLAND | 2022 | 20401578 | 4593 | 910 | 0.227 | 0.520 | 0.401 |
8 | EAST GREENWICH | 2022 | 4305850 | 2572 | 173 | 0.086 | 0.198 | 0.153 |
9 | EAST PROVIDENCE | 2022 | 36103488 | 5036 | 2443 | 0.480 | 0.637 | 0.564 |
10 | EXETER | 2022 | 1898454 | 752 | 141 | 0.201 | 0.237 | 0.220 |
11 | FOSTER | 2022 | 1057919 | 227 | 64 | 0.279 | 0.484 | 0.395 |
12 | GLOCESTER | 2022 | 2422153 | 553 | 73 | 0.137 | 0.535 | 0.391 |
13 | HOPKINTON | 2022 | 5590417 | 1137 | 236 | 0.210 | 0.565 | 0.426 |
14 | JAMESTOWN | 2022 | 291969 | 655 | 36 | 0.058 | 0.000 | 0.041 |
15 | JOHNSTON | 2022 | 19496027 | 3287 | 1371 | 0.427 | 0.523 | 0.477 |
16 | LINCOLN | 2022 | 15940955 | 3179 | 830 | 0.276 | 0.536 | 0.426 |
17 | LITTLE COMPTON | 2022 | 432020 | 344 | 49 | 0.158 | 0.000 | 0.112 |
18 | MIDDLETOWN | 2022 | 8132606 | 2175 | 694 | 0.325 | 0.297 | 0.311 |
19 | NARRAGANSETT | 2022 | 2178394 | 1211 | 220 | 0.223 | 0.000 | 0.158 |
20 | NEW SHOREHAM | 2022 | 211086 | 148 | 29 | 0.176 | 0.000 | 0.124 |
21 | NEWPORT | 2022 | 14752903 | 2088 | 1471 | 0.733 | 0.000 | 0.518 |
22 | NORTH KINGSTOWN | 2022 | 11216037 | 3747 | 793 | 0.243 | 0.268 | 0.256 |
23 | NORTH PROVIDENCE | 2022 | 26608402 | 3536 | 1667 | 0.495 | 0.680 | 0.595 |
24 | NORTH SMITHFIELD | 2022 | 6204807 | 1653 | 310 | 0.187 | 0.424 | 0.328 |
25 | PAWTUCKET | 2022 | 95061517 | 8585 | 6271 | 0.730 | 0.875 | 0.806 |
26 | PORTSMOUTH | 2022 | 3062524 | 2295 | 359 | 0.167 | 0.000 | 0.118 |
27 | PROVIDENCE | 2022 | 272489702 | 21968 | 18915 | 0.876 | 0.859 | 0.868 |
28 | RICHMOND | 2022 | 5149642 | 1135 | 172 | 0.163 | 0.544 | 0.402 |
29 | SCITUATE | 2022 | 2358211 | 1269 | 147 | 0.124 | 0.200 | 0.166 |
30 | SMITHFIELD | 2022 | 6817709 | 2378 | 366 | 0.157 | 0.323 | 0.254 |
31 | SOUTH KINGSTOWN | 2022 | 4559972 | 2918 | 514 | 0.194 | 0.006 | 0.137 |
32 | TIVERTON | 2022 | 6774565 | 1758 | 407 | 0.262 | 0.388 | 0.331 |
33 | WARREN | 2022 | 6493383 | 1240 | 455 | 0.360 | 0.488 | 0.429 |
34 | WARWICK | 2022 | 39218717 | 8615 | 2818 | 0.358 | 0.397 | 0.378 |
35 | WEST GREENWICH | 2022 | 2344535 | 891 | 132 | 0.160 | 0.288 | 0.233 |
36 | WEST WARWICK | 2022 | 30857785 | 3607 | 1933 | 0.564 | 0.747 | 0.662 |
37 | WESTERLY | 2022 | 7937325 | 2683 | 875 | 0.348 | 0.000 | 0.246 |
38 | WOONSOCKET | 2022 | 69995691 | 5890 | 4586 | 0.799 | 0.902 | 0.852 |
rimf3 = pd.merge(rimf2,education_aid, on=['Municipality','fyear'], how='inner',suffixes=('_mf2','_ea'))
print(rimf3.columns.to_numpy())
rimf3.sort_values(['fyear','Municipality'],ascending=[False,True]).head(39)
['Municipality' 'Residential_av' 'Industrial_av' 'Tangible_av' 'Vehicle_av' 'Total Assessed' 'fyear' 'Residential_lv' 'Industrial_lv' 'Tangible_lv' 'Vehicle_lv' 'Total Levy' 'Levy Per Capita' 'population' 'RRE' 'COMM' 'PP' 'MV' 'INVTY' 'Education Aid' 'RADM' 'FRL' 'SSRC' 'FRPL' 'QM']
Municipality | Residential_av | Industrial_av | Tangible_av | Vehicle_av | Total Assessed | fyear | Residential_lv | Industrial_lv | Tangible_lv | Vehicle_lv | Total Levy | Levy Per Capita | population | RRE | COMM | PP | MV | INVTY | Education Aid | RADM | FRL | SSRC | FRPL | QM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | BARRINGTON | 3200189345 | 150387019 | 45980777 | 87258115 | 3483815256 | 2022 | 61283626 | 2879911 | 880485 | 2617376 | 67661399 | 4194 | 16133.0 | 19.15 | 19.15 | 19.15 | 30.00 | NaN | 7924118 | 3416 | 145 | 0.051 | 0.298 | 0.214 |
1 | BRISTOL | 2787240049 | 296033364 | 50048887 | 91665937 | 3224988237 | 2022 | 40080512 | 4256960 | 719703 | 1590404 | 46647579 | 2106 | 22150.0 | 14.38 | 14.38 | 14.38 | 17.35 | NaN | 4852340 | 1923 | 485 | 0.230 | 0.199 | 0.215 |
2 | BURRILLVILLE | 1379931278 | 282880476 | 180839889 | 72441728 | 1916093371 | 2022 | 22658732 | 4644916 | 2969593 | 2172854 | 32446095 | 1956 | 16588.0 | 16.42 | 16.42 | 16.42 | 30.00 | NaN | 13780456 | 2226 | 782 | 0.389 | 0.607 | 0.510 |
3 | CENTRAL FALLS | 442255997 | 86157836 | 23887539 | 21953761 | 574255133 | 2022 | 9607275 | 3647064 | 1349032 | 658127 | 15261498 | 786 | 19417.0 | 23.76 | 42.33 | 56.47 | 30.00 | NaN | 38557253 | 2733 | 2666 | 0.933 | 0.975 | 0.954 |
4 | CHARLESTOWN | 2694376966 | 84851535 | 21811256 | 46754658 | 2847794415 | 2022 | 22040073 | 694086 | 178465 | 611166 | 23523789 | 3016 | 7800.0 | 8.18 | 8.18 | 8.18 | 13.08 | NaN | 1291300 | 740 | 156 | 0.214 | 0.000 | 0.151 |
5 | COVENTRY | 3270176297 | 481136320 | 99449120 | 171001393 | 4021763130 | 2022 | 61080079 | 11254260 | 1929644 | 3204895 | 77468878 | 2237 | 34631.0 | 19.40 | 23.39 | 19.4 | 18.75 | NaN | 24066104 | 4502 | 1207 | 0.303 | 0.565 | 0.453 |
6 | CRANSTON | 6866409914 | 1649757156 | 367758127 | 293311890 | 9177237087 | 2022 | 123594743 | 44543443 | 9929469 | 8799357 | 186867012 | 2300 | 81247.0 | 18.00 | 27.00 | 27.0 | 30.00 | NaN | 68482484 | 10166 | 4098 | 0.438 | 0.635 | 0.545 |
7 | CUMBERLAND | 3518317657 | 634418199 | 203717338 | 181457461 | 4537910655 | 2022 | 51860429 | 9351324 | 5775169 | 3432140 | 70419063 | 2021 | 34844.0 | 14.74 | 14.74 | 29.45 | 19.87 | NaN | 20401578 | 4593 | 910 | 0.227 | 0.520 | 0.401 |
8 | EAST GREENWICH | 2201170064 | 390591860 | 91916642 | 80564563 | 2764243129 | 2022 | 46246583 | 9081261 | 2778640 | 1843317 | 59949801 | 4583 | 13081.0 | 21.01 | 23.25 | 30.23 | 22.88 | NaN | 4305850 | 2572 | 173 | 0.086 | 0.198 | 0.153 |
9 | EAST PROVIDENCE | 2792844817 | 1179499750 | 288728740 | 194804957 | 4455878264 | 2022 | 60046147 | 31197772 | 15998448 | 6816698 | 114059066 | 2402 | 47485.0 | 21.50 | 26.45 | 55.41 | 35.00 | NaN | 36103488 | 5036 | 2443 | 0.480 | 0.637 | 0.564 |
10 | EXETER | 870934255 | 81371150 | 25730960 | 40340211 | 1018376576 | 2022 | 11949348 | 1116286 | 353056 | 1210210 | 14628901 | 2195 | 6665.0 | 13.72 | 13.72 | 13.72 | 30.00 | NaN | 1898454 | 752 | 141 | 0.201 | 0.237 | 0.220 |
11 | FOSTER | 578830988 | 44348300 | 10475354 | 24514943 | 658169585 | 2022 | 11658088 | 940878 | 307556 | 735331 | 13641853 | 2895 | 4712.0 | 21.34 | 21.34 | 29.36 | 30.00 | NaN | 1057919 | 227 | 64 | 0.279 | 0.484 | 0.395 |
12 | GLOCESTER | 1035186494 | 64322906 | 21348829 | 54847060 | 1175705289 | 2022 | 19102206 | 1423466 | 787420 | 1336378 | 22649470 | 2233 | 10143.0 | 18.44 | 22.13 | 36.88 | 24.37 | NaN | 2422153 | 553 | 73 | 0.137 | 0.535 | 0.391 |
13 | HOPKINTON | 883892640 | 100927741 | 48281770 | 40939086 | 1074041237 | 2022 | 16378516 | 1870191 | 894600 | 866813 | 20010120 | 2471 | 8098.0 | 18.53 | 18.53 | 18.53 | 21.18 | NaN | 5590417 | 1137 | 236 | 0.210 | 0.565 | 0.426 |
14 | JAMESTOWN | 2547705324 | 79106146 | 14955997 | 34750812 | 2676518279 | 2022 | 21095000 | 654999 | 123945 | 500714 | 22374657 | 4073 | 5493.0 | 8.28 | 8.28 | 8.28 | 14.42 | NaN | 291969 | 655 | 36 | 0.058 | 0.000 | 0.041 |
15 | JOHNSTON | 1892160236 | 563727427 | 193512074 | 147376137 | 2796775874 | 2022 | 43973823 | 15976035 | 12450579 | 4420417 | 76820854 | 2621 | 29310.0 | 23.24 | 28.34 | 64.34 | 30.00 | NaN | 19496027 | 3287 | 1371 | 0.427 | 0.523 | 0.477 |
16 | LINCOLN | 1563030120 | 664419139 | 187194015 | 121641256 | 2536284530 | 2022 | 31736099 | 16750031 | 5992081 | 3648669 | 58126879 | 2675 | 21730.0 | 20.29 | 25.21 | 32.01 | 30.00 | NaN | 15940955 | 3179 | 830 | 0.276 | 0.536 | 0.426 |
17 | LITTLE COMPTON | 2161884261 | 42555500 | 11244248 | 20187370 | 2235871379 | 2022 | 12800734 | 257035 | 141651 | 284780 | 13484200 | 3865 | 3489.0 | 6.04 | 6.04 | 12.08 | 13.90 | NaN | 432020 | 344 | 49 | 0.158 | 0.000 | 0.112 |
18 | MIDDLETOWN | 2757975650 | 719597500 | 100218397 | 79640236 | 3657431783 | 2022 | 33150865 | 12398665 | 1726760 | 1277791 | 48554082 | 3031 | 16019.0 | 12.02 | 17.23 | 17.23 | 16.05 | NaN | 8132606 | 2175 | 694 | 0.325 | 0.297 | 0.311 |
19 | NARRAGANSETT | 5536820247 | 367807312 | 109982141 | 76850067 | 6091459767 | 2022 | 49056227 | 4398974 | 1315386 | 1264928 | 56035516 | 3615 | 15501.0 | 8.86 | 11.96 | 11.96 | 16.46 | NaN | 2178394 | 1211 | 220 | 0.223 | 0.000 | 0.158 |
20 | NEW SHOREHAM | 1512219063 | 161964692 | 15288959 | 8271583 | 1697744297 | 2022 | 10131869 | 1085163 | 102520 | 80599 | 11400152 | 12446 | 916.0 | 6.70 | 6.70 | 6.7 | 9.75 | NaN | 211086 | 148 | 29 | 0.176 | 0.000 | 0.124 |
21 | NEWPORT | 6253671908 | 1409477896 | 152220873 | 74501090 | 7889871767 | 2022 | 58346765 | 19718596 | 2129751 | 1746476 | 81941588 | 3322 | 24666.0 | 9.33 | 13.99 | 13.99 | 23.45 | NaN | 14752903 | 2088 | 1471 | 0.733 | 0.000 | 0.518 |
22 | NORTH KINGSTOWN | 3660590770 | 805344286 | 183538760 | 180559202 | 4830033018 | 2022 | 64060339 | 14093525 | 3419262 | 3470760 | 85043886 | 3242 | 26232.0 | 17.50 | 17.50 | 17.5 | 22.04 | NaN | 11216037 | 3747 | 793 | 0.243 | 0.268 | 0.256 |
23 | NORTH PROVIDENCE | 1996593720 | 506759429 | 91286433 | 109182239 | 2703821821 | 2022 | 45542307 | 14974743 | 5913535 | 3274461 | 69705046 | 2141 | 32557.0 | 22.81 | 29.55 | 64.78 | 30.00 | NaN | 26608402 | 3536 | 1667 | 0.495 | 0.680 | 0.595 |
24 | NORTH SMITHFIELD | 1284610669 | 335214762 | 147397137 | 67072254 | 1834294822 | 2022 | 20981050 | 6516910 | 6439852 | 2011093 | 35948906 | 2896 | 12413.0 | 16.35 | 19.44 | 43.69 | 30.00 | NaN | 6204807 | 1653 | 310 | 0.187 | 0.424 | 0.328 |
25 | PAWTUCKET | 4013154906 | 949048713 | 153718310 | 164737056 | 5280658985 | 2022 | 66538110 | 27541394 | 8007187 | 4933972 | 107020663 | 1490 | 71826.0 | 16.58 | 29.02 | 52.09 | 30.00 | NaN | 95061517 | 8585 | 6271 | 0.730 | 0.875 | 0.806 |
26 | PORTSMOUTH | 3341309327 | 303880755 | 127859056 | 67166377 | 3840215515 | 2022 | 51138749 | 4650895 | 1957129 | 1511133 | 59257906 | 3413 | 17362.0 | 15.31 | 15.31 | 15.31 | 22.50 | NaN | 3062524 | 2295 | 359 | 0.167 | 0.000 | 0.118 |
27 | PROVIDENCE | 6695723334 | 3469276368 | 1117783000 | 307901312 | 11590684014 | 2022 | 167013329 | 127322520 | 62372321 | 9258888 | 365967057 | 2039 | 179484.0 | 24.56 | 36.70 | 55.8 | 30.00 | NaN | 272489702 | 21968 | 18915 | 0.876 | 0.859 | 0.868 |
28 | RICHMOND | 850001231 | 96033340 | 26235273 | 35957056 | 1008226900 | 2022 | 17527028 | 1980207 | 540986 | 813781 | 20862003 | 2726 | 7653.0 | 20.62 | 20.62 | 20.62 | 22.64 | NaN | 5149642 | 1135 | 172 | 0.163 | 0.544 | 0.402 |
29 | SCITUATE | 1251853517 | 353921441 | 26970497 | 54799296 | 1687544751 | 2022 | 21843937 | 8207438 | 1073700 | 1643803 | 32768878 | 3082 | 10632.0 | 18.69 | 23.19 | 39.81 | 30.00 | NaN | 2358211 | 1269 | 147 | 0.124 | 0.200 | 0.166 |
30 | SMITHFIELD | 2076774871 | 719365166 | 148073299 | 117981343 | 3062194679 | 2022 | 34208110 | 13452127 | 8845889 | 3538967 | 60045093 | 2768 | 21693.0 | 17.13 | 18.70 | 59.74 | 30.00 | NaN | 6817709 | 2378 | 366 | 0.157 | 0.323 | 0.254 |
31 | SOUTH KINGSTOWN | 4464036880 | 554765455 | 107007815 | 136900889 | 5262711039 | 2022 | 64505314 | 8016362 | 1546259 | 2560570 | 76628505 | 2500 | 30651.0 | 14.45 | 14.45 | 14.45 | 18.71 | NaN | 4559972 | 2918 | 514 | 0.194 | 0.006 | 0.137 |
32 | TIVERTON | 2382716127 | 295266002 | 70126333 | 70281877 | 2818390339 | 2022 | 34001362 | 4213446 | 1000703 | 1345168 | 40560680 | 2571 | 15776.0 | 14.27 | 14.27 | 14.27 | 19.14 | NaN | 6774565 | 1758 | 407 | 0.262 | 0.388 | 0.331 |
33 | WARREN | 1136266337 | 200000982 | 37340751 | 43706299 | 1417314369 | 2022 | 20134631 | 3544017 | 661634 | 1136094 | 25476376 | 2429 | 10488.0 | 17.72 | 17.72 | 17.72 | 26.00 | NaN | 6493383 | 1240 | 455 | 0.360 | 0.488 | 0.429 |
34 | WARWICK | 7247275009 | 2391529993 | 572025589 | 445330825 | 10656161416 | 2022 | 135741461 | 67201993 | 21428079 | 13359925 | 237731457 | 2935 | 80999.0 | 18.73 | 28.10 | 37.46 | 30.00 | NaN | 39218717 | 8615 | 2818 | 0.358 | 0.397 | 0.378 |
35 | WEST GREENWICH | 596066133 | 222585643 | 51343215 | 42003177 | 911998168 | 2022 | 12961156 | 5426647 | 1751849 | 798853 | 20938506 | 3364 | 6224.0 | 24.03 | 24.03 | 34.12 | 19.02 | NaN | 2344535 | 891 | 132 | 0.160 | 0.288 | 0.233 |
36 | WEST WARWICK | 1759612795 | 505959933 | 159047620 | 107997356 | 2532617704 | 2022 | 41815001 | 16775720 | 7271969 | 3074686 | 68937375 | 2382 | 28941.0 | 23.00 | 32.43 | 45.72 | 28.47 | NaN | 30857785 | 3607 | 1933 | 0.564 | 0.747 | 0.662 |
37 | WESTERLY | 5643209917 | 677003900 | 133872207 | 114923126 | 6569009150 | 2022 | 65009851 | 7799085 | 1574260 | 3210367 | 77593563 | 3442 | 22543.0 | 11.52 | 11.52 | 11.52 | 29.67 | NaN | 7937325 | 2683 | 875 | 0.348 | 0.000 | 0.246 |
38 | WOONSOCKET | 1130855404 | 547028703 | 123239200 | 89200938 | 1890324245 | 2022 | 26857836 | 19009252 | 5740485 | 2674739 | 54282311 | 1305 | 41596.0 | 23.75 | 34.75 | 46.58 | 30.00 | NaN | 69995691 | 5890 | 4586 | 0.799 | 0.902 | 0.852 |
final = rimf3
final['Assessed per Capita'] = round(final['Total Assessed']/final['population']) #assessed value per capita
final['RADM per Capita'] = round(final['RADM']/final['population'],2) #RADM per capita
final['Aid at RRE'] = round(1000*final['Education Aid']/final['Residential_av'],2) #Aid rate equivalent
final['Adjusted RRE'] = final['RRE'] + final['Aid at RRE'] #residential rate with aid
final['Assessed per RADM'] = round(final['Total Assessed']/final['RADM']) #assessed value per RADM
print(final.columns.to_numpy())
final = final.sort_values(['fyear','Municipality'],ascending=[False,True])
final
['Municipality' 'Residential_av' 'Industrial_av' 'Tangible_av' 'Vehicle_av' 'Total Assessed' 'fyear' 'Residential_lv' 'Industrial_lv' 'Tangible_lv' 'Vehicle_lv' 'Total Levy' 'Levy Per Capita' 'population' 'RRE' 'COMM' 'PP' 'MV' 'INVTY' 'Education Aid' 'RADM' 'FRL' 'SSRC' 'FRPL' 'QM' 'Assessed per Capita' 'RADM per Capita' 'Aid at RRE' 'Adjusted RRE' 'Assessed per RADM']
Municipality | Residential_av | Industrial_av | Tangible_av | Vehicle_av | Total Assessed | fyear | Residential_lv | Industrial_lv | Tangible_lv | Vehicle_lv | Total Levy | Levy Per Capita | population | RRE | COMM | PP | MV | INVTY | Education Aid | RADM | FRL | SSRC | FRPL | QM | Assessed per Capita | RADM per Capita | Aid at RRE | Adjusted RRE | Assessed per RADM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | BARRINGTON | 3200189345 | 150387019 | 45980777 | 87258115 | 3483815256 | 2022 | 61283626 | 2879911 | 880485 | 2617376 | 67661399 | 4194 | 16133.0 | 19.15 | 19.15 | 19.15 | 30.00 | NaN | 7924118 | 3416 | 145 | 0.051 | 0.298 | 0.214 | 215943.0 | 0.21 | 2.48 | 21.63 | 1019852.0 |
1 | BRISTOL | 2787240049 | 296033364 | 50048887 | 91665937 | 3224988237 | 2022 | 40080512 | 4256960 | 719703 | 1590404 | 46647579 | 2106 | 22150.0 | 14.38 | 14.38 | 14.38 | 17.35 | NaN | 4852340 | 1923 | 485 | 0.230 | 0.199 | 0.215 | 145598.0 | 0.09 | 1.74 | 16.12 | 1677061.0 |
2 | BURRILLVILLE | 1379931278 | 282880476 | 180839889 | 72441728 | 1916093371 | 2022 | 22658732 | 4644916 | 2969593 | 2172854 | 32446095 | 1956 | 16588.0 | 16.42 | 16.42 | 16.42 | 30.00 | NaN | 13780456 | 2226 | 782 | 0.389 | 0.607 | 0.510 | 115511.0 | 0.13 | 9.99 | 26.41 | 860779.0 |
3 | CENTRAL FALLS | 442255997 | 86157836 | 23887539 | 21953761 | 574255133 | 2022 | 9607275 | 3647064 | 1349032 | 658127 | 15261498 | 786 | 19417.0 | 23.76 | 42.33 | 56.47 | 30.00 | NaN | 38557253 | 2733 | 2666 | 0.933 | 0.975 | 0.954 | 29575.0 | 0.14 | 87.18 | 110.94 | 210119.0 |
4 | CHARLESTOWN | 2694376966 | 84851535 | 21811256 | 46754658 | 2847794415 | 2022 | 22040073 | 694086 | 178465 | 611166 | 23523789 | 3016 | 7800.0 | 8.18 | 8.18 | 8.18 | 13.08 | NaN | 1291300 | 740 | 156 | 0.214 | 0.000 | 0.151 | 365102.0 | 0.09 | 0.48 | 8.66 | 3848371.0 |
5 | COVENTRY | 3270176297 | 481136320 | 99449120 | 171001393 | 4021763130 | 2022 | 61080079 | 11254260 | 1929644 | 3204895 | 77468878 | 2237 | 34631.0 | 19.40 | 23.39 | 19.4 | 18.75 | NaN | 24066104 | 4502 | 1207 | 0.303 | 0.565 | 0.453 | 116132.0 | 0.13 | 7.36 | 26.76 | 893328.0 |
6 | CRANSTON | 6866409914 | 1649757156 | 367758127 | 293311890 | 9177237087 | 2022 | 123594743 | 44543443 | 9929469 | 8799357 | 186867012 | 2300 | 81247.0 | 18.00 | 27.00 | 27.0 | 30.00 | NaN | 68482484 | 10166 | 4098 | 0.438 | 0.635 | 0.545 | 112955.0 | 0.13 | 9.97 | 27.97 | 902738.0 |
7 | CUMBERLAND | 3518317657 | 634418199 | 203717338 | 181457461 | 4537910655 | 2022 | 51860429 | 9351324 | 5775169 | 3432140 | 70419063 | 2021 | 34844.0 | 14.74 | 14.74 | 29.45 | 19.87 | NaN | 20401578 | 4593 | 910 | 0.227 | 0.520 | 0.401 | 130235.0 | 0.13 | 5.80 | 20.54 | 988006.0 |
8 | EAST GREENWICH | 2201170064 | 390591860 | 91916642 | 80564563 | 2764243129 | 2022 | 46246583 | 9081261 | 2778640 | 1843317 | 59949801 | 4583 | 13081.0 | 21.01 | 23.25 | 30.23 | 22.88 | NaN | 4305850 | 2572 | 173 | 0.086 | 0.198 | 0.153 | 211317.0 | 0.20 | 1.96 | 22.97 | 1074745.0 |
9 | EAST PROVIDENCE | 2792844817 | 1179499750 | 288728740 | 194804957 | 4455878264 | 2022 | 60046147 | 31197772 | 15998448 | 6816698 | 114059066 | 2402 | 47485.0 | 21.50 | 26.45 | 55.41 | 35.00 | NaN | 36103488 | 5036 | 2443 | 0.480 | 0.637 | 0.564 | 93838.0 | 0.11 | 12.93 | 34.43 | 884805.0 |
10 | EXETER | 870934255 | 81371150 | 25730960 | 40340211 | 1018376576 | 2022 | 11949348 | 1116286 | 353056 | 1210210 | 14628901 | 2195 | 6665.0 | 13.72 | 13.72 | 13.72 | 30.00 | NaN | 1898454 | 752 | 141 | 0.201 | 0.237 | 0.220 | 152795.0 | 0.11 | 2.18 | 15.90 | 1354224.0 |
11 | FOSTER | 578830988 | 44348300 | 10475354 | 24514943 | 658169585 | 2022 | 11658088 | 940878 | 307556 | 735331 | 13641853 | 2895 | 4712.0 | 21.34 | 21.34 | 29.36 | 30.00 | NaN | 1057919 | 227 | 64 | 0.279 | 0.484 | 0.395 | 139679.0 | 0.05 | 1.83 | 23.17 | 2899425.0 |
12 | GLOCESTER | 1035186494 | 64322906 | 21348829 | 54847060 | 1175705289 | 2022 | 19102206 | 1423466 | 787420 | 1336378 | 22649470 | 2233 | 10143.0 | 18.44 | 22.13 | 36.88 | 24.37 | NaN | 2422153 | 553 | 73 | 0.137 | 0.535 | 0.391 | 115913.0 | 0.05 | 2.34 | 20.78 | 2126049.0 |
13 | HOPKINTON | 883892640 | 100927741 | 48281770 | 40939086 | 1074041237 | 2022 | 16378516 | 1870191 | 894600 | 866813 | 20010120 | 2471 | 8098.0 | 18.53 | 18.53 | 18.53 | 21.18 | NaN | 5590417 | 1137 | 236 | 0.210 | 0.565 | 0.426 | 132630.0 | 0.14 | 6.32 | 24.85 | 944627.0 |
14 | JAMESTOWN | 2547705324 | 79106146 | 14955997 | 34750812 | 2676518279 | 2022 | 21095000 | 654999 | 123945 | 500714 | 22374657 | 4073 | 5493.0 | 8.28 | 8.28 | 8.28 | 14.42 | NaN | 291969 | 655 | 36 | 0.058 | 0.000 | 0.041 | 487260.0 | 0.12 | 0.11 | 8.39 | 4086287.0 |
15 | JOHNSTON | 1892160236 | 563727427 | 193512074 | 147376137 | 2796775874 | 2022 | 43973823 | 15976035 | 12450579 | 4420417 | 76820854 | 2621 | 29310.0 | 23.24 | 28.34 | 64.34 | 30.00 | NaN | 19496027 | 3287 | 1371 | 0.427 | 0.523 | 0.477 | 95421.0 | 0.11 | 10.30 | 33.54 | 850860.0 |
16 | LINCOLN | 1563030120 | 664419139 | 187194015 | 121641256 | 2536284530 | 2022 | 31736099 | 16750031 | 5992081 | 3648669 | 58126879 | 2675 | 21730.0 | 20.29 | 25.21 | 32.01 | 30.00 | NaN | 15940955 | 3179 | 830 | 0.276 | 0.536 | 0.426 | 116718.0 | 0.15 | 10.20 | 30.49 | 797825.0 |
17 | LITTLE COMPTON | 2161884261 | 42555500 | 11244248 | 20187370 | 2235871379 | 2022 | 12800734 | 257035 | 141651 | 284780 | 13484200 | 3865 | 3489.0 | 6.04 | 6.04 | 12.08 | 13.90 | NaN | 432020 | 344 | 49 | 0.158 | 0.000 | 0.112 | 640834.0 | 0.10 | 0.20 | 6.24 | 6499626.0 |
18 | MIDDLETOWN | 2757975650 | 719597500 | 100218397 | 79640236 | 3657431783 | 2022 | 33150865 | 12398665 | 1726760 | 1277791 | 48554082 | 3031 | 16019.0 | 12.02 | 17.23 | 17.23 | 16.05 | NaN | 8132606 | 2175 | 694 | 0.325 | 0.297 | 0.311 | 228318.0 | 0.14 | 2.95 | 14.97 | 1681578.0 |
19 | NARRAGANSETT | 5536820247 | 367807312 | 109982141 | 76850067 | 6091459767 | 2022 | 49056227 | 4398974 | 1315386 | 1264928 | 56035516 | 3615 | 15501.0 | 8.86 | 11.96 | 11.96 | 16.46 | NaN | 2178394 | 1211 | 220 | 0.223 | 0.000 | 0.158 | 392972.0 | 0.08 | 0.39 | 9.25 | 5030107.0 |
20 | NEW SHOREHAM | 1512219063 | 161964692 | 15288959 | 8271583 | 1697744297 | 2022 | 10131869 | 1085163 | 102520 | 80599 | 11400152 | 12446 | 916.0 | 6.70 | 6.70 | 6.7 | 9.75 | NaN | 211086 | 148 | 29 | 0.176 | 0.000 | 0.124 | 1853433.0 | 0.16 | 0.14 | 6.84 | 11471245.0 |
21 | NEWPORT | 6253671908 | 1409477896 | 152220873 | 74501090 | 7889871767 | 2022 | 58346765 | 19718596 | 2129751 | 1746476 | 81941588 | 3322 | 24666.0 | 9.33 | 13.99 | 13.99 | 23.45 | NaN | 14752903 | 2088 | 1471 | 0.733 | 0.000 | 0.518 | 319868.0 | 0.08 | 2.36 | 11.69 | 3778674.0 |
22 | NORTH KINGSTOWN | 3660590770 | 805344286 | 183538760 | 180559202 | 4830033018 | 2022 | 64060339 | 14093525 | 3419262 | 3470760 | 85043886 | 3242 | 26232.0 | 17.50 | 17.50 | 17.5 | 22.04 | NaN | 11216037 | 3747 | 793 | 0.243 | 0.268 | 0.256 | 184128.0 | 0.14 | 3.06 | 20.56 | 1289040.0 |
23 | NORTH PROVIDENCE | 1996593720 | 506759429 | 91286433 | 109182239 | 2703821821 | 2022 | 45542307 | 14974743 | 5913535 | 3274461 | 69705046 | 2141 | 32557.0 | 22.81 | 29.55 | 64.78 | 30.00 | NaN | 26608402 | 3536 | 1667 | 0.495 | 0.680 | 0.595 | 83049.0 | 0.11 | 13.33 | 36.14 | 764655.0 |
24 | NORTH SMITHFIELD | 1284610669 | 335214762 | 147397137 | 67072254 | 1834294822 | 2022 | 20981050 | 6516910 | 6439852 | 2011093 | 35948906 | 2896 | 12413.0 | 16.35 | 19.44 | 43.69 | 30.00 | NaN | 6204807 | 1653 | 310 | 0.187 | 0.424 | 0.328 | 147772.0 | 0.13 | 4.83 | 21.18 | 1109676.0 |
25 | PAWTUCKET | 4013154906 | 949048713 | 153718310 | 164737056 | 5280658985 | 2022 | 66538110 | 27541394 | 8007187 | 4933972 | 107020663 | 1490 | 71826.0 | 16.58 | 29.02 | 52.09 | 30.00 | NaN | 95061517 | 8585 | 6271 | 0.730 | 0.875 | 0.806 | 73520.0 | 0.12 | 23.69 | 40.27 | 615103.0 |
26 | PORTSMOUTH | 3341309327 | 303880755 | 127859056 | 67166377 | 3840215515 | 2022 | 51138749 | 4650895 | 1957129 | 1511133 | 59257906 | 3413 | 17362.0 | 15.31 | 15.31 | 15.31 | 22.50 | NaN | 3062524 | 2295 | 359 | 0.167 | 0.000 | 0.118 | 221185.0 | 0.13 | 0.92 | 16.23 | 1673297.0 |
27 | PROVIDENCE | 6695723334 | 3469276368 | 1117783000 | 307901312 | 11590684014 | 2022 | 167013329 | 127322520 | 62372321 | 9258888 | 365967057 | 2039 | 179484.0 | 24.56 | 36.70 | 55.8 | 30.00 | NaN | 272489702 | 21968 | 18915 | 0.876 | 0.859 | 0.868 | 64578.0 | 0.12 | 40.70 | 65.26 | 527617.0 |
28 | RICHMOND | 850001231 | 96033340 | 26235273 | 35957056 | 1008226900 | 2022 | 17527028 | 1980207 | 540986 | 813781 | 20862003 | 2726 | 7653.0 | 20.62 | 20.62 | 20.62 | 22.64 | NaN | 5149642 | 1135 | 172 | 0.163 | 0.544 | 0.402 | 131743.0 | 0.15 | 6.06 | 26.68 | 888306.0 |
29 | SCITUATE | 1251853517 | 353921441 | 26970497 | 54799296 | 1687544751 | 2022 | 21843937 | 8207438 | 1073700 | 1643803 | 32768878 | 3082 | 10632.0 | 18.69 | 23.19 | 39.81 | 30.00 | NaN | 2358211 | 1269 | 147 | 0.124 | 0.200 | 0.166 | 158723.0 | 0.12 | 1.88 | 20.57 | 1329822.0 |
30 | SMITHFIELD | 2076774871 | 719365166 | 148073299 | 117981343 | 3062194679 | 2022 | 34208110 | 13452127 | 8845889 | 3538967 | 60045093 | 2768 | 21693.0 | 17.13 | 18.70 | 59.74 | 30.00 | NaN | 6817709 | 2378 | 366 | 0.157 | 0.323 | 0.254 | 141160.0 | 0.11 | 3.28 | 20.41 | 1287719.0 |
31 | SOUTH KINGSTOWN | 4464036880 | 554765455 | 107007815 | 136900889 | 5262711039 | 2022 | 64505314 | 8016362 | 1546259 | 2560570 | 76628505 | 2500 | 30651.0 | 14.45 | 14.45 | 14.45 | 18.71 | NaN | 4559972 | 2918 | 514 | 0.194 | 0.006 | 0.137 | 171698.0 | 0.10 | 1.02 | 15.47 | 1803534.0 |
32 | TIVERTON | 2382716127 | 295266002 | 70126333 | 70281877 | 2818390339 | 2022 | 34001362 | 4213446 | 1000703 | 1345168 | 40560680 | 2571 | 15776.0 | 14.27 | 14.27 | 14.27 | 19.14 | NaN | 6774565 | 1758 | 407 | 0.262 | 0.388 | 0.331 | 178651.0 | 0.11 | 2.84 | 17.11 | 1603180.0 |
33 | WARREN | 1136266337 | 200000982 | 37340751 | 43706299 | 1417314369 | 2022 | 20134631 | 3544017 | 661634 | 1136094 | 25476376 | 2429 | 10488.0 | 17.72 | 17.72 | 17.72 | 26.00 | NaN | 6493383 | 1240 | 455 | 0.360 | 0.488 | 0.429 | 135137.0 | 0.12 | 5.71 | 23.43 | 1142995.0 |
34 | WARWICK | 7247275009 | 2391529993 | 572025589 | 445330825 | 10656161416 | 2022 | 135741461 | 67201993 | 21428079 | 13359925 | 237731457 | 2935 | 80999.0 | 18.73 | 28.10 | 37.46 | 30.00 | NaN | 39218717 | 8615 | 2818 | 0.358 | 0.397 | 0.378 | 131559.0 | 0.11 | 5.41 | 24.14 | 1236931.0 |
35 | WEST GREENWICH | 596066133 | 222585643 | 51343215 | 42003177 | 911998168 | 2022 | 12961156 | 5426647 | 1751849 | 798853 | 20938506 | 3364 | 6224.0 | 24.03 | 24.03 | 34.12 | 19.02 | NaN | 2344535 | 891 | 132 | 0.160 | 0.288 | 0.233 | 146529.0 | 0.14 | 3.93 | 27.96 | 1023567.0 |
36 | WEST WARWICK | 1759612795 | 505959933 | 159047620 | 107997356 | 2532617704 | 2022 | 41815001 | 16775720 | 7271969 | 3074686 | 68937375 | 2382 | 28941.0 | 23.00 | 32.43 | 45.72 | 28.47 | NaN | 30857785 | 3607 | 1933 | 0.564 | 0.747 | 0.662 | 87510.0 | 0.12 | 17.54 | 40.54 | 702140.0 |
37 | WESTERLY | 5643209917 | 677003900 | 133872207 | 114923126 | 6569009150 | 2022 | 65009851 | 7799085 | 1574260 | 3210367 | 77593563 | 3442 | 22543.0 | 11.52 | 11.52 | 11.52 | 29.67 | NaN | 7937325 | 2683 | 875 | 0.348 | 0.000 | 0.246 | 291399.0 | 0.12 | 1.41 | 12.93 | 2448382.0 |
38 | WOONSOCKET | 1130855404 | 547028703 | 123239200 | 89200938 | 1890324245 | 2022 | 26857836 | 19009252 | 5740485 | 2674739 | 54282311 | 1305 | 41596.0 | 23.75 | 34.75 | 46.58 | 30.00 | NaN | 69995691 | 5890 | 4586 | 0.799 | 0.902 | 0.852 | 45445.0 | 0.14 | 61.90 | 85.65 | 320938.0 |
def get_fyear(final):
fy = str(np.max(final['fyear'].to_numpy()))
return(fy)
avcp = final.sort_values(['fyear','Assessed per Capita'],ascending=[False,False]).head(39).\
loc[:,['Municipality','Total Assessed','fyear','population','Assessed per Capita']].reset_index()
avcp_municipality=avcp['Municipality'].to_numpy()
avcp_assessed_per_capita=avcp['Assessed per Capita'].to_numpy()
avcp
index | Municipality | Total Assessed | fyear | population | Assessed per Capita | |
---|---|---|---|---|---|---|
0 | 20 | NEW SHOREHAM | 1697744297 | 2022 | 916.0 | 1853433.0 |
1 | 17 | LITTLE COMPTON | 2235871379 | 2022 | 3489.0 | 640834.0 |
2 | 14 | JAMESTOWN | 2676518279 | 2022 | 5493.0 | 487260.0 |
3 | 19 | NARRAGANSETT | 6091459767 | 2022 | 15501.0 | 392972.0 |
4 | 4 | CHARLESTOWN | 2847794415 | 2022 | 7800.0 | 365102.0 |
5 | 21 | NEWPORT | 7889871767 | 2022 | 24666.0 | 319868.0 |
6 | 37 | WESTERLY | 6569009150 | 2022 | 22543.0 | 291399.0 |
7 | 18 | MIDDLETOWN | 3657431783 | 2022 | 16019.0 | 228318.0 |
8 | 26 | PORTSMOUTH | 3840215515 | 2022 | 17362.0 | 221185.0 |
9 | 0 | BARRINGTON | 3483815256 | 2022 | 16133.0 | 215943.0 |
10 | 8 | EAST GREENWICH | 2764243129 | 2022 | 13081.0 | 211317.0 |
11 | 22 | NORTH KINGSTOWN | 4830033018 | 2022 | 26232.0 | 184128.0 |
12 | 32 | TIVERTON | 2818390339 | 2022 | 15776.0 | 178651.0 |
13 | 31 | SOUTH KINGSTOWN | 5262711039 | 2022 | 30651.0 | 171698.0 |
14 | 29 | SCITUATE | 1687544751 | 2022 | 10632.0 | 158723.0 |
15 | 10 | EXETER | 1018376576 | 2022 | 6665.0 | 152795.0 |
16 | 24 | NORTH SMITHFIELD | 1834294822 | 2022 | 12413.0 | 147772.0 |
17 | 35 | WEST GREENWICH | 911998168 | 2022 | 6224.0 | 146529.0 |
18 | 1 | BRISTOL | 3224988237 | 2022 | 22150.0 | 145598.0 |
19 | 30 | SMITHFIELD | 3062194679 | 2022 | 21693.0 | 141160.0 |
20 | 11 | FOSTER | 658169585 | 2022 | 4712.0 | 139679.0 |
21 | 33 | WARREN | 1417314369 | 2022 | 10488.0 | 135137.0 |
22 | 13 | HOPKINTON | 1074041237 | 2022 | 8098.0 | 132630.0 |
23 | 28 | RICHMOND | 1008226900 | 2022 | 7653.0 | 131743.0 |
24 | 34 | WARWICK | 10656161416 | 2022 | 80999.0 | 131559.0 |
25 | 7 | CUMBERLAND | 4537910655 | 2022 | 34844.0 | 130235.0 |
26 | 16 | LINCOLN | 2536284530 | 2022 | 21730.0 | 116718.0 |
27 | 5 | COVENTRY | 4021763130 | 2022 | 34631.0 | 116132.0 |
28 | 12 | GLOCESTER | 1175705289 | 2022 | 10143.0 | 115913.0 |
29 | 2 | BURRILLVILLE | 1916093371 | 2022 | 16588.0 | 115511.0 |
30 | 6 | CRANSTON | 9177237087 | 2022 | 81247.0 | 112955.0 |
31 | 15 | JOHNSTON | 2796775874 | 2022 | 29310.0 | 95421.0 |
32 | 9 | EAST PROVIDENCE | 4455878264 | 2022 | 47485.0 | 93838.0 |
33 | 36 | WEST WARWICK | 2532617704 | 2022 | 28941.0 | 87510.0 |
34 | 23 | NORTH PROVIDENCE | 2703821821 | 2022 | 32557.0 | 83049.0 |
35 | 25 | PAWTUCKET | 5280658985 | 2022 | 71826.0 | 73520.0 |
36 | 27 | PROVIDENCE | 11590684014 | 2022 | 179484.0 | 64578.0 |
37 | 38 | WOONSOCKET | 1890324245 | 2022 | 41596.0 | 45445.0 |
38 | 3 | CENTRAL FALLS | 574255133 | 2022 | 19417.0 | 29575.0 |
import matplotlib.pyplot as plt
import numpy as np
towns = avcp_municipality
y = avcp_assessed_per_capita
fy = get_fyear(final)
stitle = 'FY' + fy + ' Total Assessed Value per Capita'
fname = '../FY' + fy + '_Assessed_Value_per_Capita.png'
plt.rcdefaults()
plt.rcParams['figure.figsize'] = [18, 10]
fig, ax = plt.subplots()
x_pos = np.arange(len(towns))
ax.bar(x_pos, y, align='center')
ax.set_yticks(np.arange(0,2000000,200000))
ax.set_xticklabels(towns,rotation = 90,fontsize=14)
ax.set_xticks(np.arange(len(towns)))
ax.set_ylabel('Assessed Value per Capita (millions)',fontsize=24)
ax.set_title(stitle,fontsize=28)
fig.tight_layout()
#plt.show()
plt.savefig(fname)
/tmp/ipykernel_33004/2207103273.py:18: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(towns,rotation = 90,fontsize=14)
rtrr = final.sort_values(['fyear','RRE'],ascending=[False,False]).\
loc[:,['Municipality','fyear','population','Assessed per Capita','RADM','RRE']].reset_index()
rtrr_municipality=rtrr['Municipality'].to_numpy()
rtrr_residential_tax_rate=rtrr['RRE'].to_numpy()
rtrr
index | Municipality | fyear | population | Assessed per Capita | RADM | RRE | |
---|---|---|---|---|---|---|---|
0 | 27 | PROVIDENCE | 2022 | 179484.0 | 64578.0 | 21968 | 24.56 |
1 | 35 | WEST GREENWICH | 2022 | 6224.0 | 146529.0 | 891 | 24.03 |
2 | 3 | CENTRAL FALLS | 2022 | 19417.0 | 29575.0 | 2733 | 23.76 |
3 | 38 | WOONSOCKET | 2022 | 41596.0 | 45445.0 | 5890 | 23.75 |
4 | 15 | JOHNSTON | 2022 | 29310.0 | 95421.0 | 3287 | 23.24 |
5 | 36 | WEST WARWICK | 2022 | 28941.0 | 87510.0 | 3607 | 23.00 |
6 | 23 | NORTH PROVIDENCE | 2022 | 32557.0 | 83049.0 | 3536 | 22.81 |
7 | 9 | EAST PROVIDENCE | 2022 | 47485.0 | 93838.0 | 5036 | 21.50 |
8 | 11 | FOSTER | 2022 | 4712.0 | 139679.0 | 227 | 21.34 |
9 | 8 | EAST GREENWICH | 2022 | 13081.0 | 211317.0 | 2572 | 21.01 |
10 | 28 | RICHMOND | 2022 | 7653.0 | 131743.0 | 1135 | 20.62 |
11 | 16 | LINCOLN | 2022 | 21730.0 | 116718.0 | 3179 | 20.29 |
12 | 5 | COVENTRY | 2022 | 34631.0 | 116132.0 | 4502 | 19.40 |
13 | 0 | BARRINGTON | 2022 | 16133.0 | 215943.0 | 3416 | 19.15 |
14 | 34 | WARWICK | 2022 | 80999.0 | 131559.0 | 8615 | 18.73 |
15 | 29 | SCITUATE | 2022 | 10632.0 | 158723.0 | 1269 | 18.69 |
16 | 13 | HOPKINTON | 2022 | 8098.0 | 132630.0 | 1137 | 18.53 |
17 | 12 | GLOCESTER | 2022 | 10143.0 | 115913.0 | 553 | 18.44 |
18 | 6 | CRANSTON | 2022 | 81247.0 | 112955.0 | 10166 | 18.00 |
19 | 33 | WARREN | 2022 | 10488.0 | 135137.0 | 1240 | 17.72 |
20 | 22 | NORTH KINGSTOWN | 2022 | 26232.0 | 184128.0 | 3747 | 17.50 |
21 | 30 | SMITHFIELD | 2022 | 21693.0 | 141160.0 | 2378 | 17.13 |
22 | 25 | PAWTUCKET | 2022 | 71826.0 | 73520.0 | 8585 | 16.58 |
23 | 2 | BURRILLVILLE | 2022 | 16588.0 | 115511.0 | 2226 | 16.42 |
24 | 24 | NORTH SMITHFIELD | 2022 | 12413.0 | 147772.0 | 1653 | 16.35 |
25 | 26 | PORTSMOUTH | 2022 | 17362.0 | 221185.0 | 2295 | 15.31 |
26 | 7 | CUMBERLAND | 2022 | 34844.0 | 130235.0 | 4593 | 14.74 |
27 | 31 | SOUTH KINGSTOWN | 2022 | 30651.0 | 171698.0 | 2918 | 14.45 |
28 | 1 | BRISTOL | 2022 | 22150.0 | 145598.0 | 1923 | 14.38 |
29 | 32 | TIVERTON | 2022 | 15776.0 | 178651.0 | 1758 | 14.27 |
30 | 10 | EXETER | 2022 | 6665.0 | 152795.0 | 752 | 13.72 |
31 | 18 | MIDDLETOWN | 2022 | 16019.0 | 228318.0 | 2175 | 12.02 |
32 | 37 | WESTERLY | 2022 | 22543.0 | 291399.0 | 2683 | 11.52 |
33 | 21 | NEWPORT | 2022 | 24666.0 | 319868.0 | 2088 | 9.33 |
34 | 19 | NARRAGANSETT | 2022 | 15501.0 | 392972.0 | 1211 | 8.86 |
35 | 14 | JAMESTOWN | 2022 | 5493.0 | 487260.0 | 655 | 8.28 |
36 | 4 | CHARLESTOWN | 2022 | 7800.0 | 365102.0 | 740 | 8.18 |
37 | 20 | NEW SHOREHAM | 2022 | 916.0 | 1853433.0 | 148 | 6.70 |
38 | 17 | LITTLE COMPTON | 2022 | 3489.0 | 640834.0 | 344 | 6.04 |
import matplotlib.pyplot as plt
import numpy as np
towns = rtrr_municipality
y = rtrr_residential_tax_rate
fy = get_fyear(final)
stitle = 'FY' + fy + ' Residential Tax Rate (dollars per thousand)'
fname = '../FY' + fy + '_Residential_Tax_Rates.png'
plt.rcdefaults()
plt.rcParams['figure.figsize'] = [18, 10]
fig, ax = plt.subplots()
x_pos = np.arange(len(towns))
ax.bar(x_pos, y, align='center')
ax.set_yticks(np.arange(0,30,4))
ax.set_xticklabels(towns,rotation = 90,fontsize=14)
ax.set_xticks(np.arange(len(towns)))
ax.set_ylabel('Residential Tax Rate (dollars per thousand)',fontsize=24)
ax.set_title(stitle,fontsize=28)
fig.tight_layout()
#plt.show()
plt.savefig(fname)
/tmp/ipykernel_33004/1609785505.py:19: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels(towns,rotation = 90,fontsize=14)